Ethnopharmacological relevance
Viscum album L. (European mistletoe), a member of the Santalaceae, is a hemiparasitic, evergreen shrub growing on deciduous and coniferous trees. In traditional and folk medicine, mistletoe was used for the treatment of central nervous system disorders such as epilepsy, hysteria, insomnia, nervous excitability, neuralgia, headache, dizziness and fatigue. However, relatively little is known of its neuropharmacological activity.
Aim of the study
The aim of the present study was to evaluate the effect of treatment with aqueous and hydroethanolic extracts from Viscum album L. parasitizing birch, linden and pine, on MAO-A and MAO-B activity as well as serotonin, dopamine and serotonin receptor 5-HTR1A levels in Galleria mellonella (Lepidoptera) larvae.
Materials and methods
The phytochemical composition of the extracts was characterised using UPLC-DAD-ESI-MS/MS. To investigate the neuropharmacological activity of Viscum album L. extracts, Galleria mellonella (Lepidoptera) larvae were used as a model organism. The inhibitory potential of the extracts against MAO-A and MAO-B was determined by fluorometry. The serotonin, dopamine and serotonin receptor 5-HTR1A levels in larvae hemolymph after treatment were quantified by ELISA.
Results
UPLC-DAD-ESI-MS/MS analysis allowed the identification of 88 compounds, either full or in part. Most of the characterised phytochemicals were flavonoids, hydroxycinnamic acids and lignans. Screening found that aqueous and hydroethanolic mistletoe extracts inhibited the enzymatic activity of either MAO-A or MAO-B or both. Additionally, mistletoe extract administration increased the levels of serotonin and serotonin receptor 5-HTR1A. None of the tested extracts had any significant effect on dopamine level.
Conclusions
A key novel finding was that the aqueous and hydroethanolic extracts from Viscum album L. inhibited monoamine oxidase activity and increased the levels of serotonin and serotonin receptor 5-HTR1A in Galleria mellonella (Lepidoptera) larvae. These properties may be due to the presence of phenolic constituents, particularly flavonoids. Further research based on bioassay-guided fractionation of mistletoe is needed to identify CNS-active molecules.